Solve each inequality. 1.  \frac{1-7n}{5} > 10

Question

Solve each inequality.

1.  \frac{1-7n}{5}   > 10

0

Answers ( No )

    0
    2021-11-23T17:38:52+00:00

    First multiply 5 on both sides to get rid of the five on the bottom.

    \frac{1-7n}{5*5}[tex]>10*5[/tex]

    1-7n>50

    Subtract 1 from both sides of the inequality.

    1-1-7n>50-1

    -7n>49

    Divide -7 on both sides, and flip the inequality sign since we are dividing by a negative.

    \frac{-7n}{7}[tex]>\frac{49}{-7}[/tex]

    n<-7

    The solution to the inequality is n<-7.

    0
    2021-11-23T17:39:26+00:00

    Solution, \frac{1-7n}{5}>10\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x<-7\:\\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:-7\right)\end{bmatrix}

    Steps:

    \mathrm{Multiply\:both\:sides\:by\:}5, \frac{5\left(1-7n\right)}{5}>10\cdot \:5

    \mathrm{Simplify}, 1-7n>50

    \mathrm{Subtract\:}1\mathrm{\:from\:both\:sides}, 1-7n-1>50-1

    \mathrm{Simplify}, -7n>49

    Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right), \left(-7n\right)\left(-1\right)<49\left(-1\right)

    \mathrm{Simplify}, 7n<-49

    \mathrm{Divide\:both\:sides\:by\:}7, \frac{7n}{7}<\frac{-49}{7}

    \mathrm{Simplify}, n<-7

    The correct answer is n<-7

    Hope This Helps!!!

Leave an answer

Browse
Browse